考试吧

公务员

考试吧>公 务 员>行政能力>推理判断>正文
2008年北京市社招公务员数字推理备考指导
中公网 2008-03-18 18:35:10 评论(0)条

  数字推理要点简述

  数字推理的题目通常状况下是给你一个数列,但整个数列中缺少一项(中间或两边),要求应试者仔细观察这个数列各数字之间的关系,判断其中的规律,然后在四个选择答案中选择最合理的答案。

  一、解题关键点

  1.培养数字、数列敏感度是应对数字推理的关键

  2.熟练掌握各种基本数列(自然数列、平方数列、立方数列等)

  3.熟练掌握本章所列的八大种类数列,并深刻理解“变式”的概念

  4.进行大量的习题训练

  二、熟练掌握简单数列

  要想很好的解决数量关系—数字推理问题首先要了解掌握简单数列知识。

  1.应掌握的基本数列

  自然数列: 1,2,3,4,5,6,7…… ①

  奇数列: 1,3,5,7,9,11…… ②

  偶数列: 2,4,6,8,10,12…… ③

  自然数平方数列:1,4,9,16,25,36…… ④

  自然数立方数列:1,8,27,64,125,216…… ⑤

  等差数列:1,6,11,16,21,26…… ⑥

  等比数列:1,3,9,27,81,243…… ⑦

  我们所说的“应当掌握”是指应极为熟练与敏感,同时对于平方数列应要知道1-19的平方数变化,对于立方数列应要知道立方数列1-9的立方数变化。

推荐:2008北京公务员考试申论备考分析及必胜策略

  数字推理题型解析

  等差数列

  1.等差数列:是数字推理最基础的题型,是解决数字推理的“第一思维”。所谓“第一思维”是指在进行任何数字推理的解题时都要首先想到等差数列,即从数与数之间的差的关系进行推理和判断。

  例题:12,17,22,,27,32,( )

  解析:后一项与前一项的差为5,括号内应填27。

  2.二级等差数列:

  二级等差数列概要:后一项减前一项所得的新的数列是一个等差数列。

  例题1:-2,1,7,16,( ),43

  A.25 B.28 C.31 D.35 (2002年中央B类真题)

  例题2:1、2,6,12,20,30,( )

  A.38 B.42 C.48 D.56 (2002年中央A类真题)

  例题3:3、2,5,11,20,32,( )

  A.43 B.45 C.47 D.49 (2002年中央A类真题)

  3.二级等差数列的变式:

  二级等差数列变式概要:后一项减前一项所得的新的数列是一个基本数列,这个数列可能是自然数列、等比数列、平方数列、立方数列、或者与加减“1”、“2”的形式有关。

  例题1: 1,2,5,14,( )

  A.31 B.41 C.51 D.61 (2005年中央甲类真题)

  例题2: 1 2 6 15 31 ( )

  A.53 B.56 C,62 D.87 (2003年中央B类真题)

  例题3 32,27,23,20,18,( )

  A.14 B.15 C.16 D.17 (2002年中央B类真题)

  例题4: 2、20,22,25,30,37,( )

  A.39 B.45 C.48 D.51 (2002年中央A类真题)

  例题5:10,18,33,( ),92

  3.三级等差数列及其变式:

  例1:1,10,31,70,133,( )

  A.136 B.186 C.226 D.256 (2005年中央甲类真题)

  例题2:0,1,3,8,22,63,( )

  A.163 B.174 C.185 D.196 (2005年中央甲类真题)

  例题3:( ) 36 19 10 5 2

  A.77 B.69 C.54 D.48 (2003年中央B类真题)

  例题4:1,4,8,14,42,( )

  A.76 B.66 C.64 D.68 (2004年浙江省真题)

  等比数列

  等比数列的概念构建与等差数列的概念构建基本一致,所以要对比学习。

  1.等比数列:后一项与前一项的比为固定的值叫做等比数列。

  例题:3,9,( ),81,243

  解析:此题较为简单,括号内应填27。

  2.二级等比数列:后一项与前一项的比所得的新的数列是一个等比数列。

  例题:1,2,8,( ),1024

  解析:后一项与前一项的比得到2,4,8,16,所以括号内应填64。

  3.二级等比数列变式:

  二级等比数列变式概要:后一项与前一项所得的比形成的新的数列可能是自然数列、平方数列、立方数列、或者与加减“1”的形式有关。

  例题1:2,4,12,48,( )

  A.96 B.120 C.240 D.480 (2005年中央甲类真题)

  例题2: 1,1,2,6,( )

  A.21 B.22 C.23 D.24 (2005年中央甲类真题)

  例题3:10,9,17,50,( )

  解析:10的1倍减1得到9,9的2倍减1得到17,由引可推括号内应为50的4倍减1,即199。

  例题4:6,15,35,77,( )

  A.106 B.117 C.136 D.163 (2004年江苏省真题)

  例题5:2,8,24,64,( )

  A.160 B.512 C.124 D.164 (2004年江苏省真题)

  重点:等差数列与等比数列是最基本、最典型、最常见的数字推理题型。必须熟练掌握其基本形式及其变式。

  和数列

  1.典型(两项求和)和数列:

  典型和数列概要:前两项的加和得到第三项。

  例题1:1,1,2,3,5,8,( )

  解析:最典型的和数列,括号内应填13。

  例题2:1,3,4,7,11,( )

  A.14 B.16 C.18 D.20 (2002年中央A类真题)

  解析:1+3=4(第3项),3+4=7(第4项),4+7=11(第5项),

  所以,答案为7+11=18,即C。

  例题3:17 10 ( ) 3 4 —1

  A.7 B.6 C.8 D.5 (2004年浙江真题)

  解析:17-10=7(第3项),10—7=3(第4项),7-3=4(第5项),3-4=-1(第6项)

  所以,答案为17-10=7,即A。

  2.典型(两项求和)和数列变式:

  典型(两项求和)和数列变式概要:前两项的加和经过变化之后得到第三项,这种变化可能是加、减、乘、除某一常数;或者每两项加和与项数之间具有某种关系。

  例题1:3,8,10,17,( )

  解析:3+8-1=10(第3项),8+10-1=17(第4项),10+17-1=26(第5项),

  所以,答案为26。

  例题2:4,8,6,7,( ),27/4

  解析:(4+8)÷2=6(第3项),(8+6)÷2=7(第4项),(6+7)÷2=13/2(第5项),

  所以,答案为13/2,这里注意,27/4是一个验证项即(7+13/2)÷2=27/4。

  例题3:4,5,11,14,22,( )

  解析:每前一项与后一项的加和得到9,16,25,36(自然数平方数列)括号内应为27。

  例题4: 22,35,56,90,( ),234

  A.162 B.156 C.148 D.145 (2003年浙江真题)

  3.三项和数列变式:

  三项和数列是2005年中央国家机关公务员考试出现的新题型,它的规律特点为“三项加和得到第四项”。

  例题1: 0,1,1,2,4,7,13,( )

  A.22 B.23 C.24 D.25 (2005年中央甲类真题)

  积数列

  1.典型(两项求积)积数列:

  典型积数列概要:前两项相乘得到第三项。

  例题1: 1 3 3 9 ( ) 243

  A.12 B.27 C.124 D.169 (2003年中央B类真题)

  解析:1×3=3(第3项),3×3=9(第4项),3×9=27(第5项), 9×27=243(第6项),

  所以,答案为27,即B。

  例题2: 1,2,2,4,( ),32

  A.4 B.6 C.8 D.16 (2002年中央A类真题)

  解析:1×2=2(第3项),2×2=4(第4项),2×4=8(第5项), 4×8=32(第6项),

  所以,答案为8,即C。

  2.积数列变式:

  积数列变式概要:前两项的相乘经过变化之后得到第三项,这种变化可能是加、减、乘、除某一常数;或者每两项相乘与项数之间具有某种关系。

  例题1:2,5,11,56,( )

  A.126 B.617 C.112 D.92 (2004年江苏真题)

  解析:2×5+1=11(第3项),5×11+1=56(第4项),11×56+1=617(第5项),

  所以,答案为617,即B。

  例题2:3/2, 2/3, 3/4,1/3,3/8 ( )

  解析:此题较为直观,每两项相乘得到1,1/2,1/4,1/8,1/16,所以括号内应填1/6。

推荐:2008北京公务员考试申论备考分析及必胜策略

  平方数列

  1.典型平方数列(递增或递减):

  例题:196,169,144,( ),100

  答案为125。

  2.平方数列变式:

  平方数列变式概要:这一数列特点不是简单的平方或立方数列,而是在此基础上进行“加减常数”的变化。

  例题1 2,3,10,15,26,( )

  A.29 B.32 C.35 D.37 (2005年中央甲类真题)

  例题2:0,3,8,15,( )

  解析:各项分别平方数列减1的形式,所以括号内应填24。

  例题2:83,102,123,( ),171

  解析:各项分别平方数列加2的形式,所以括号内应填146。

  例题3:17,27,39,( ),69

  解析:各项分别平方数列加自然数列的形式,所以括号内应填53。

  3.平方数列最新变化—二级平方数列:

  平方数列的这种新变化集中体现在2005年中央国家机关公务员考试中,从而大大拓展了平方数列考查的深度,这也必将成为2006年中央国家机关公务员考试的重点。

  例题1:1,4,16,49,121,( )

  A.256 B.225 C.196 D.169 (2005年中央甲类真题)

  例题2: 9,16,36,100,( )

  A.144 B.256 C.324 D.361 (2004年江苏B类真题)

  例题3: 1,2,3,7,46,( )

  A.2109 B.1289 C.322 D.147 (2005年中央甲类真题)

  立方数列

  提示:立方数列与平方数列的概念构建类似,所以可参照学习。

  1.典型立方数列(递增或递减):

  例题:125,64,27,( ),1

  答案为8。

  2.立方数列变式:

  立方数列变式概要:这一数列特点不是立方数列进行简单变化,而是在此基础上进行“加减常数”的变化。

  例题1:3,10,29,66,( )

  解析:各项分别为立方数列加2的形式,所以括号内应填127。

  例题2:11,33,73,( ),231

  解析:各项分别为立方数列加3,6,9,12,15的形式,所以括号内应填137。

  例题3:6,29,62,127,( )345

  解析:第1、3、5项为立方数列减2的形式,第2、4、6项为立方加2的形式,所以括号内应填214。

  例题4:1/8,1/9,9/64,( ),3/8

  解析:各项分母可变化为2、3、4、5、6的立方,分子可以变化为1,3,9,27,81,所以括号内应填27/125。

  例5:1,4,27,256 ( )

  解析:各项分别为1的1次方,2的2次方,3的3次方,4的4次方,所以括号内应填5的5次方即为3125。

推荐:2008北京公务员考试申论备考分析及必胜策略

  组合数

  1.数列间隔组合:两个数列(七种基本数列的任何一种或两种)进行分隔组合。

  例题1:1,3,3,5,7,9,13,15,( ),( )

  A.19,21 B.19,23 C.21,23 D.27,30 (2005年中央甲类真题)

  解析:二级等差数列1,3,7,13,(21)和二级等差数列3,5,9,15,(23)的间隔组合。

  所以,答案为21,23(C)。

  例题2: 2/3 1/2 2/5 1/3 2/7 ( )

  A.1/4 B.1/6 C.2/11 D.2/9 (2003年中央A类真题)

  解析:数列2/3,2/5,2/7和数列1/2,1/3,(1/4)的间隔组合。

  所以,答案为1/4(A)。

  例题3:1, 3, 3, 6, 7, 12, 15, ( )

  A.17 B.27 C.30 D.24 (2004年江苏A类真题)

  解析:二级等差数列1,3,7,15和等比数列3,6,12,(24)的间隔组合。

  所以,答案为24(D)。

  例题4: 4 9 6 12 8 15 10 ( )

  A.18 B.13 C.16 D.15 (2004年浙江真题)

  解析:等差数列4,6,8,10和等差数列9,12,15,(18)的间隔组合。

  所以,答案为18(A)。

  2.数列分段组合:

  例题1:6 12 19 27 33 ( ) 48

  A.39 B.40 C.41 D.42 (2004年浙江真题)

  例题2:2 2 4 12 12 ( ) 72

  3.特殊组合数列:

  例题: 1.01 2.02 3.04 5.08 ( )

  A. 7.12 B.7.16 C.8.122 D.8.16 (2003年山东真题)

  解析:整数部分为和数列1,2,3,5,(8),小数部分为等比数列0.01,0.02,0.04,0.08,(016)。

  所以,答案为8.16,即D。

  1.质数列及其变式:

  例题1:2,3,5,( ),11,13

  解析:质数列是一个非常重要的数列,质数即只能被1和本身整除的数。

  例题2:4, 6, 10, 14, 22, ( ) (2004年江苏A类真题)

  A.30 B.28 C.26 D.24

  解析|:各项除以2即得到质数列2,3,5,7,11,(13)。

  所以,答案为13,即C。

  2.合数列:

  例题:4,6,8,9,10,12,( )

  解析:请注意和质数列相对的即合数列,除去质数列剩下的不含1的自然数为合数列。

  3.分式最简式:

  例题: 133/57 119/51 91/39 49/21 ( ) 7/3

  A.28/12 B.21/14 C.28/9 D.31/15

  解析:各项约分成最简分式的形式都为7/3。

  所以,答案为|28/12,即A。

  4.无理式:

  1.无理式:

 

推荐:2008北京公务员考试申论备考分析及必胜策略

展开全文

公务员万题库

更多
行测
行测
已有8110223人做题
下载
申论
申论
已有421098人做题
下载

公务员章节课

全部科目
评论(0条) 发表
Copyright © 2004-
考试吧(m.566.com)北京美满明天科技有限公司
社会统一信用代码:91110108MA01WU311X
帮助中心